Pure Core 1 Past Paper Questions Pack A: Mark Scheme

Taken from MAME

January 2001

Q	Solution	Marks	Total	Comments
1 (a)	0, -6	B1B1	2	
(b)	$(x-1)(x^2-3x-4) (x-1)(x+1)(x-4)$	B1		for $x-1$ factor
	(x-1)(x+1)(x-4)	M1A1	3	allow separate factors $(x^2 - 1)(x - 4)$ SR1
	Total		5	
2 (a)	$(x-3)^2-2$	M1A1	2	$(x+3)^2 - 2 \text{ or } (x-3)^2 \pm a \text{ M1}$
(b)	$(x-3)^2 - 2$ c.v $3 \pm \sqrt{2}$ or $\frac{6 \pm \sqrt{8}}{2}$ $3 - \sqrt{2} < x < 3 + \sqrt{2}$, allow separately	M1A1 B1	3	$ \begin{cases} $
	Total		5	

Q	Solution	Marks	Total	Comments
5 (a)	$(0 <) 2x < 5 \Rightarrow (0 <) x < 2.5$	B1	1	in effect, 5÷2
(b)	$V = x(5 - 2x)(8 - 2x)$ $= x(4x^{2} - 26x + 40)$ $= 4x^{3} - 26x^{2} + 40x$	M1 M1 A1	3	expanding sensible quadratic
(c)	$\frac{dV}{dx} = 12x^2 - 52x + 40$ $12x^2 - 52x + 40 = 0$	M1A1		M1 for 2 correct
	$12x^{2} - 52x + 40 = 0$ $x = 1 \text{or } \frac{10}{3} \text{ false argument } \text{M0}$	M1A2	5	$\begin{cases} M1 \text{ for solving quadratic} \\ \text{allow A1 for } \frac{10}{3} \text{ only or } 1, -\frac{10}{3} \end{cases}$
(d)	18(cm ³)	В1	1	
	Total		10	

June 2001

3	(a)	$(x+2)^2$	M1		
		-9	A1	2	
	(b)	$(x+2)^2 > 9$ or one c.v. of 1 or -5 seen	M1		
		x < -5, $x > 1$	A1A1	3	M1A1 if only the wraparound is seen i.e. $-5 > x > 1$ s.r. B1 if one correct inequality, following wrong working
		Total		5	

_					. Р	2M7
I	4	8 + 4a + 2b + 4	M1		a.e.f.	
		= 0	A1			
		= 0 $-1+a-b+4=0$ $a = -3, b = 0$	M1A1			
		a = -3, b = 0	A1A1	6		
		or s.r. maximum mark $\frac{5}{6}$:				
		(x)(x-2)(x+1)	M1			
		(x)(x-2)(x+1) $(x-2)(x-2)(x+1)$ Multiplying out $a = -3, b = 0$	A1			
		Multiplying out	M1			
		a = -3, b = 0	A1A1			
		Total		6		

	Total		U	
,				
6 (a)	$V = x^2 h$	B1		
	$V = x^2 h$ $A = x^2 + 4xh$	M1A1	3	
(b)(i)	$v = x^2 \left(\frac{3000 - x^2}{4x} \right)$	M1		for elimination of h
	$= 750x - \frac{1}{4}x^3$	A1	2	a.g.
(ii)	$750 - 3 x^2$	M1		differentiation with one term correct
	$750 - \frac{3}{4}x^2 = 0$			differentiation with one term correct
		A1		
	$x = 10\sqrt{10}$ or $\sqrt{1000}$	A1	3	allow $\pm \sqrt{1000}$
(iii)	Complete substitution of exact x	M1	_	
	$5000\sqrt{10}$	A1	2	must use exact method
	Total		10	

January 2002

	Total		5	
	Allow if pairing unclear in final answer			trial and error: full marks if full solution obtained
	x = 3, y = -1 $x = 1, y = 1$	A1	5	$\begin{cases} (x,y) \text{ or } x\text{'s or } y\text{'s,} \\ \text{irrespective of working} \end{cases}$
	x = 3, y = -1	A1		factorising must be correct Allow B1 for any pair
	Solution of quadratic	M1		complete method
	$\Rightarrow x^2 - 4x + 3 = 0$	A1		quadratic equal to zero (3 terms)
3	$x^2 + 2x(2 - x) = 3$	M1		for elimination of 1 variable

PMT

-				
Q	Solution	Marks	Total	Comments
4 (a)	$\frac{\mathrm{d}P}{\mathrm{d}t} = -3t^2 + 114t + 117$	M1A1	2	M1 if 2 correct terms
(b)(i)	$3t^2 - 114t - 117 = 0$	M1		set $\frac{dP}{dt} = 0$ quadratic only.
	t = 39(or -1)	m1A1	3	allow answer only
(ii)	t = 39(or -1) e.g. $\frac{dy}{dx}$ changes from $+ ve$ to $- ve$	M1		allow sketch or values at T point
	Maximum	A1	2	S.R. B1 if not justified S.R. B1 if $\frac{d^2 P}{dt^2} = 114 - 6t$ only
(c)(i)	2009√	B1√	1	\int on $t > 0$ from (b)(i)
(ii)	Extinction	B1	1	allow $P = 0$
				do not allow "minimum"
	Total		9	

<u>P</u>MT Marks Total Q Solution Comments

V	Solution	mains	1000	Comments
8 (a)	$\overrightarrow{PQ} = \begin{pmatrix} 5 \\ -5 \end{pmatrix}$	M1		allow if on diagram or if signs incorrect
	$PQ^{2} = 5^{2} + 5^{2}$ $\sqrt{50} = 5\sqrt{2} A.G.$ $\frac{dy}{dx} = 2x - 4$	M1 A1 M1A1	3	B.O.D. unless decimals seen M1 if one term correct
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4 \text{ at } Q$	M1		use of $x = 4$ in $\frac{dy}{dx}$ [Allow use of $x = -1$ for M1A0]
	y = 4x + C	A1		
	$6 = 4 \times 4 + C$ or $y - 6 = 4(x - 4)$	M1		for use of $(4,6)$ in their $y = mx + c$
	y = 4x - 10	A1	6	GRAPHICAL/NUMERICAL/FIRST PRINCIPLES
				full marks if obtain correct gradient otherwise M0
(c)	$\frac{x^3}{3} - 2x^2 + 6x$	M1A1		M1 for 2 terms
	$\left(\frac{64}{3} - 32 + 24\right) - \left(-\frac{1}{3} - 2 - 6\right)$	M1A1		M1 for 4 and -1, correct way round, "integrated expression"
	$\frac{65}{3}$ or 21.7	A1	5	S.R. $\frac{4}{5}$ for correct answer then adjusted in some way
				$ ALTERNATIVE y_1 - y_2 = -x^2 + 3x + 4 $
				$\int = -\frac{1}{3}x^3 + \frac{3}{2}x^2 + 4x(+C)$ M1A1 [Allow $y_2 - y_1$]
				$F(4) - F(-1) = 20\frac{5}{6}$ M1A1

J	June 2002						
Ī	Q	Solution	Marks	Total	Comments		
	1 (a)	f(1) = 0, f(-1) = -4	B1B1	2			
	(b)	Use of Factor Theorem	M1				
		3 linear factors found	A3, 2, 1	4	One mark for each correct factor. NMS but 3 factors correct $\frac{3}{4}$. SC all signs wrong, ie factors $x + 1$, $x - 2$, $x - 3$:		
		Total		6			

Total

[4 out of 5 max]

14

	1			
3	Elimination of x or of y	M1		
	$2x^2 - x - 3 = 0$ or $4y^2 - 3y - 1 = 0$	A1		ie correctly simplified to 3 non-zero terms
	Valid method for solving quadratic	m1		m0 if trivialised, eg no x term
	Both roots correct	A1		
	Solutions $(-1, 1), \left(\frac{3}{2}, -\frac{1}{4}\right)$	A1	5	Condone vagueness about pairing
	NMS 0/5 if no elimination seen; 3/3 for cor	rect solution	ons after c	orrect quadratic found
	Total		5	
Q	Solution	Marks	Total	Comments
5(a)(i)	Use of quadratic formula	M1		OE; must have numerical values
	$x = \frac{-8 \pm \sqrt{8}}{4}$	A1	2	or equivalent surd forms
(ii)	x < lower value or > higher value	M1		With c's values (must have two) M1 if c shows right idea (eg by sketch) M0 if using eg $ab > 0 \Rightarrow a > 0$ or $b > 0$
	Clear and correct solution set	A1F	2	A0 for writing $a > x > b$ (except as FW); ft wrong solutions of quadratic penalised in (i); condone eg ' $x < -2.71$ or $x > -1.29$ ' Condone \leq for $<$
(b)	Use of $(x+b)^2 = x^2 + 2bx + b^2$ A = 2 and $B = 2$	M1 A1		PI
	C = -1	A1	3	NMS 3/3, or 1/3 for 2, 4, -9 or 2, 2, 3
(c) (i)	Min value is −1	B1F	1	ft wrong value of C
(ii)	Min at x = -2	B1F	1	ft wrong value of B
	Total		9	
Q	Solution	Marks	Total	Comments
7 (a)	$\int y dx = 12x - 3\left(\frac{1}{3}x^3\right)(+c)$	M1A1		M1 if at least one term correct
	$\int_{0}^{2} y dx = 16$	A1	3	
(b)(i)	y' = -kx Gradient at <i>P</i> is -12	M1 A1	2	where k is a positive constant
(ii)	5 79	m1		eg by finding equation of tangent
	$y_Q = 24$	A1F	2	NMS 2/2; ft wrong (negative) gradient
(c)	Method 1 Area of \triangle <i>OPQ</i> = 24	A1F		dependent on previous m mark ft wrong value of y_Q
	Required area = $24 - 16 = 8$	A1F	2	dependent on all 3 method marks; ft wrong value in (a) or (b)(ii) giving positive answer

A1F A1 dependent on previous m mark ft wrong equation of PQ

Method 2 Required area = $\int_{0}^{2} (24-12x)-(12-3x^{2}) dx$

November 2002

Q	Solution	Marks	Total	Comments
3 (a)	f(2) = 8 + 12 - 12 - 8 = 0	B1	1	Accept NMS
(b)	x-2 (or $x+1$ or $x+4$) is a factor	В1	1	May appear in (a) or (c) but use of Factor Theorem must be implied
(c)	$f(x) = (x-2)(x^2 + 5x + 4)$ = (x-2)(x+1)(x+4)	M1A1 m1A1	4	OE; M1 for 5x or 4 correct 2-mark penalty for reversal of signs
				NMS (or repeated use of Factor Theorem) 4/4 all correct, 1/4 for second factor found
	Total		6	

5 (a)	Method for solving quadratic	M1		
	$x = \frac{-32 \pm \sqrt{72}}{4}$	A1		OE
	$\dots = -8 \pm \frac{3}{2}\sqrt{2}$	B1F	3	Correct use of $\sqrt{72} = 6\sqrt{2}$ OE
(b)(i)	m = 8	B1		
	n = -9	B1F	2	ft error in finding m
(ii)	So minimum value is -9	B1F	1	ft wrong value for n
	Total		6	

Q	Solution	Marks	Total	Comments
7 (a)		В1		
	Gradient of AB is $\frac{6-0}{2-1}$	M1		ft
	Equation of <i>AB</i> is $y = 6(x-1)$	m1		OE
	ie $6x - y - 6 = 0$	A1F	4	OE but in required form; ft wrong <i>y</i> -coordinate for <i>B</i>
(b)	$\int y dx = \frac{1}{4} x^4 - \frac{1}{2} x^2 (+c)$	M1A1		M1 if at least one term correct
	Substitution of $x = 1$	m1		
	$\int_0^1 y \mathrm{d}x = -\frac{1}{4}$	A1F		PI, eg $\int_0^1 y dx = \frac{1}{4}$; ft one error in a
				coefficient
	So area is $\frac{1}{4}$	A1F	5	ft negative answer; allow 1/2 for answer $\frac{1}{4}$ not clearly justified
				4
				eg " $-\frac{1}{4} = \frac{1}{4}$ " or using $\int_0^1 y dx$ without
				explanation
	Total		9	
	7 (a)	7 (a) y-coordinate of B is $2^3 - 2 = 6$ Gradient of AB is $\frac{6-0}{2-1}$ Equation of AB is $y = 6(x-1)$ ie $6x - y - 6 = 0$ (b) $\int y dx = \frac{1}{4}x^4 - \frac{1}{2}x^2(+c)$ Substitution of $x = 1$ $\int_0^1 y dx = -\frac{1}{4}$ So area is $\frac{1}{4}$	7 (a) y-coordinate of B is $2^3 - 2 = 6$ Gradient of AB is $\frac{6 - 0}{2 - 1}$ Equation of AB is $y = 6(x - 1)$ in $6x - y - 6 = 0$ A1F (b) $\int y dx = \frac{1}{4}x^4 - \frac{1}{2}x^2(+c)$ Substitution of $x = 1$ $\int_0^1 y dx = -\frac{1}{4}$ So area is $\frac{1}{4}$ A1F	7 (a) y-coordinate of B is $2^3 - 2 = 6$ Gradient of AB is $\frac{6 - 0}{2 - 1}$ Equation of AB is $y = 6(x - 1)$ in $6x - y - 6 = 0$ A1F 4 (b) $\int y dx = \frac{1}{4}x^4 - \frac{1}{2}x^2(+c)$ Substitution of $x = 1$ $\int_0^1 y dx = -\frac{1}{4}$ A1F So area is $\frac{1}{4}$ A1F 5

Ð١	17

		Total		12	
	(d)	Arrival time is 8.24 am	B1B1	2	
		Conclusion drawn	E1	3	AG
					or of y'' for $x = 2$
	(c)	Values of y for $x < 2$, $x = 2$, $x > 2$	M1A1		or of y' for $x < 2$, $x > 2$
					NMS 1/3 for $x = 2$ or $x = 4$, 2/3 for both, 4/4 for all three correct values
		2, 1	1.12,1		
		ie for $x = 2, 4$	A2,1	4	-1 EE
		and when $x^2 - 6x + 8 = 0$	M1		OE method leading to 2 non-zero values
	(b)	y' = 0 for x = 0	B1		Condone factors instead of values in (b)
			Di		Condon Coton into de Cordon in (1)
8	(a)	$y' = 4x^3 - 24x^2 + 32x$	M1A2,1	3	M1 if at least one term correct; -1 EE
_					$_{+}$

January 2003

3	(a)	$x(2x + 1) = 3 \text{ or } 2x + 1 = \frac{3}{x}$	M1		
		$2x^2 + x - 3 = 0$	A1	2	convincingly obtained (AG)
	(b)	Method for solving quadratic	M1		i.e. formula, factors or completing square
		Solutions $(1,3)$, $\left(-\frac{3}{2},-2\right)$	A2,1	3	A1 for both x values or one pair correct
					NMS 2/3 for both x values correct, 3/3 all correct
		Total		5	

5	(a)	a = -3, b = 6	B1B1	2	
	(b)	Method for midpoint	M1		
		M is $\left(-\frac{3}{2},3\right)$	A1F	2	ft wrong values in (a); Allow NMS
	(c)	Grad of AB is 2	B1F		ft wrong values in (a); PI by next statement
		Grad of perp is $-\frac{1}{2}$	B1F		ft wrong grad for AB
		Line is $y = mx + c$ where $m = -\frac{1}{2}$ and	M1		Allow c's value
		$c = \frac{9}{4}$	A1F	4	ft c's M and c's m; condone wrong form
		Total		8	

	Total		10	
	$\dots = \frac{9}{80} (= 0.1125)$	A1	3	
	Area = $\frac{1}{8} - \frac{2}{160} (= 0.125 - 0.0125)$	A1		This mark awarded if at least one term correct
(ii)	Substitution of $x = \frac{1}{2}$	m1		
(b)(i)	$y_P = \frac{3}{8} (=0.375)$ $\int y dx = \frac{1}{2} x^2 - \frac{2}{5} x^5 (+c)$	M1A1	2	M1 if at least one term correct
(iii)	$y_P = \frac{3}{8} (=0.375)$	B1	1	
	$x_P = \frac{1}{2}$ convincingly shown	A1	2	AG; Allow verification
(ii)	$y' = 1 - 8x^{3}$ $SP \Rightarrow y' = 0$ $x_{P} = \frac{1}{2} \text{ convincingly shown}$ $y_{P} = \frac{3}{2} (=0.375)$	M1		PI
7 (a)(i)	$y'=1-8x^3$	M1A1	2	M1 if at least one term correct

8 (a)	Rationalising denominator	M1		
	Numerator becomes $2\sqrt{2} + 3$	m1A1		
	Denominator = 1, so answer is $2\sqrt{2} + 3$	A1F	4	ft one small error in numerator (ans in reqd form)
				$2\sqrt{2} + 3 \text{ NMS}$ 3/4
(b)	LHS = $\sqrt{2}x - 2$ $\sqrt{2}x - x < 2\sqrt{2} + 2$	В1		Allow B1 for $\sqrt{2}x - \sqrt{4}$
	$\sqrt{2}x - x < 2\sqrt{2} + 2$	M1		Allow M1 even with decimals
				Allow equality here
	$x < \frac{2\sqrt{2} + 2}{\sqrt{2} - 1}$	A1F	3	or better; ft one error in LHS
	$x < \frac{1}{\sqrt{2}-1}$			Allow $x < \frac{2\sqrt{2} + 2}{\sqrt{2} - 1}$ even if not fully
				explained (after equations approach)
	Total		7	

Marks

Total

Comments

Solution

June 20

ur	1e 2	003			
2	(a)	A = 3, B = -2	B1B1	2	
	(b)	Method for solving quadratic	M1		
		$x = -3 \pm \sqrt{2} \text{ or } \frac{-6 \pm \sqrt{8}}{2}$	A2,1F	3	A1 if one root found or if small error made; ft wrong answer in (a)
					NB Follow through when $B > 0$: M1A1 for showing that there are no real roots, M1A0 for writing e.g. $x = -3 \pm \sqrt{-2}$
					NMS B2 for one exact root, B3 for both; B1 for AWRT -1.59, B1 for AWRT -4.41 (3sf needed)
		Total		5	ì

_____*PMT*

Q	Solution	Marks	Total	Comments		
4 (a)	Gradient is $\frac{3}{2}$	B1		PI		
	Equation is $y = \frac{3}{2}x$	B1F	2	ft wrong gradient provided $c = 0$		
(b)(i)	Gradient of given line is $-\frac{2}{3}$	B1		PI; or gradient of perp line is $-\frac{2}{3}$; allow AWRT -0.666 or -0.667		
	Hence given line perpendicular to OA	E1	2	convincingly shown (AG)		
(ii)	Attempt at midpoint of OA	M1		Allow 3/3 for other convincing method		
	Midpoint is $\left(1, \frac{3}{2}\right)$	A1				
	This lies on the given line	E1	3	convincingly shown (AG)		
	Total		7			

Q	Solution	Marks	Total	Comments
6 (a)(i)	$\sqrt{3} = 3^{\frac{1}{2}}$	B1	1	
(ii)	$\frac{3^x}{\sqrt{3}} = 3^{x-\frac{1}{2}}$	B1F	1	ft wrong answer to (i)
(b)	Complete method for finding x	M1		
	$x = -\frac{1}{2}$	A2,1F	3	ft wrong answer to (a)(ii) A1 if one small error made No method or trial method: 1/3 for AWRT – 0.500 unless answer justified (verified)
	Total		5	

Q	Solution	Marks	Total	Comments
8 (a)	f(3) = -2, $f(4) = 0$	B1B1	2	
(b)	Awareness of factor theorem	M1		PI by answers involving 1, 2, 4
	f(x) = (x-1)(x-2)(x-4)	A1	2	M1A0 for $(x+1)(x+2)(x+4)$ or for two factors correct
(c)(i)	$y' = 3x^2 - 14x + 14$	В3	3	B1 for each term
(ii)	Gradient at $x = 3$ is -1	B1F		ft one wrong coefficient
	Function is decreasing	E1F	2	ft wrong (non-zero) value for gradient at $x = 3$
				Alternative methods: 2/2 for convincing argument based on SP at $x \approx 3.22$ or values $f(a), f(b)$ where $a \le 3 < b$
(iii)	$\int y dx = \frac{1}{4} x^4 - \frac{7}{3} x^3 + 7x^2 - 8x(+c)$	M1A2	3	M1 if at least one term correct; -1 EE
(iv)	Substitution of $x = 1$ and/or $x = 2$	M1		in c's integral (not y or y')
	Both substitutions and subtraction	m1		Subtraction must be right way round
	5			
	$Area = \frac{5}{12}$	A1	3	allow AWRT 0.416 or 0.417
	Total		15	
loven	nber 2003 Method for solving quadratic	M1		Eg 3 numbers in correct formula with at
	$x = \frac{12 \pm \sqrt{8}}{4}$	A2,1	3	most one error OE; A1 if one small error made
4.5	7			
(b)	Discriminant = $144 - 168 < 0$ $144 - 8p = 0 \Rightarrow p = 18$	M1A1 M1A1	2 2	OE; eg completing the square NMS 2/2; OE, eg correct factors found
(c)		WITAT	7	NWIS 2/2, OE, eg correct factors found
		1		
Q	Solution	Marks	Total	Comments
4 (a)	$A = \frac{1}{2}(2+t)(6-t)$	M1		
	$A = \frac{1}{2}(2+t)(6-t)$ $\dots = 6 + 2t - \frac{1}{2}t^2$	A1	2	Convincingly shown (AG)
(b)(i)	A' = 2 - t	M1A1	2	M1 if at least one non-zero term correct
(ii)	= 0 when $t = 2$	A1	1	AG; allow verification here
(c)(i)	P(4,0), O(0,4)	B1	1	

Q	Solution	Marks	Total	Comments
4 (a)	$A = \frac{1}{2}(2+t)(6-t)$	M1		
	$\cdots = 6 + 2t - \frac{1}{2}t^2$	A1	2	Convincingly shown (AG)
(b)(i)	A' = 2 - t	M1A1	2	M1 if at least one non-zero term correct
(ii)	= 0 when $t = 2$	A1	1	AG; allow verification here
(c)(i)	P(4,0), Q(0,4)	B1	1	
(ii)	Grad of $PQ = -1$	B1F	1	ft wrong coords for P, Q
(iii)	Eqn of line with correct grad	M1		Allow c's grad given in (ii)
	Eqn of PQ is $x + y = 4$	A1	2	OE
	Total		9	
· ·				

Q	Solution	Marks	Total	Comments
7 (a)	At $P, Q, 2x = -2x^2 + x + 6$	M1		
	$2x^{2} + x - 6 = 0$ $(2x - 3)(x + 2) = 0$	A1		
	(2x-3)(x+2)=0	m1		OE, eg correct use of correct formula;
				condone verification of $x = \frac{3}{2}$
	So $x_P = \frac{3}{2}$ (AG) and $x_Q = -2$	A1	4	_
(b)	Area $T = \frac{1}{2} \left(\frac{3}{2} \right) (3) = \frac{9}{4}$	M1A1	2	OE, e.g. integration
(c)(i)	$\intdx = -\frac{2}{3}x^3 + \frac{1}{2}x^2 + 6x(+c)$	В3	3	B1 for each term
(ii)	$\intdx = -\frac{2}{3}x^3 + \frac{1}{2}x^2 + 6x(+c)$ $\int_0^{\frac{3}{2}} (-2x^2 + x + 6)dx = \frac{63}{8}$	B1		No credit for $\int_{-2}^{\frac{3}{2}} (-2x^2x + 6) dx$
	So area of $R = \frac{63}{8} - \frac{9}{4} = \frac{45}{8}$	M1A1F	3	ft wrong values
	Alternative methods for (c) (ii):			
	Method 1: $\int_{0}^{\frac{3}{2}} (-2x^2 - x + 6) dx \frac{45}{8}$	M1A2,1		
	$\int_{\frac{3}{2}}^{\frac{3}{2}} \left(2x^2 + x - 6\right) dx$	MIAO		I To loop with the control of the catalog of the city of

Jar	nua	ry 2004			
3	(a) (b) (c)	$f(2) = 0$ x - 2 is a factor $f(x) = (x-2)(x^2 + 6x + 9)$ =(x - 2) (x + 3) ²	B1 B1 M1A1 m1A1	1 1 4	Allow NMS or $x + 3$ if from Factor Theorem M1 if $6x$ or 9 correct NMS $1/4$ for 2^{nd} factor, $4/4$ all correct If c divides by $x + 2$, give M1 if $2x$ or -9 appears If c writes $x + 2$ and $x - 3$ as factors, give B1 If c's answer is $(x + 2)(x - 3)^2$, give B2
		Tr.		-	

		Method 2 $\int_{0}^{\frac{3}{2}} (2x^2 + x - 6) dx$	MIAO		Unless right answer legitimately obtained
		Total		12	
Ja		ry 2004 f(2) = 0	B1	1	Allow NMS
`	()	x-2 is a factor	B1	1	or $x + 3$ if from Factor Theorem
	' '	$f(x) = (x-2)(x^2 + 6x+9)$ =(x-2) (x + 3) ² Total	MIA1 mIA1	4	M1 if $6x$ or 9 correct NMS 1/4 for 2^{nd} factor, 4/4 all correct If c divides by $x + 2$, give M1 if $2x$ or -9 appears If c writes $x + 2$ and $x - 3$ as factors, give B1 If c's answer is $(x + 2)(x - 3)^2$, give B2
	0	Solution	Marks	Total	Comments
5	_		B1 B1	2	Allow NMS PI; condone $(\pm) \frac{2}{3}x$; allow NMS
		Perp grad is $\frac{3}{2}$	B1F	1	Condone $\frac{3}{2} x$; ft wrong answer to (a)
	(c)	Req'd line is $y - 1 = \frac{3}{2}(x - 4)$ ie $3x - 2y = 10$	M1 A1	2	OE; B1 for full verification Convincingly shown (AG)

Jar	nua	ry 2004		,	
3	(a)	f(2) = 0	B1	1	Allow NMS
	(b)		B1	1	or $x + 3$ if from Factor Theorem
	(c)	$f(x) = (x-2)(x^2 + 6x + 9)$	M1A1		M1 if 6x or 9 correct
		= $(x-2)(x+3)^2$	m1A1	4	NMS 1/4 for 2 nd factor, 4/4 all correct
					If c divides by $x + 2$, give M1 if $2x$ or -9 appears
					If c writes $x + 2$ and $x - 3$ as factors, give
					If c's answer is $(x+2)(x-3)^2$, give B2
		Total		6	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
_			-	-	
			l		
	Q	Solution	Marks	Total	Comments
5	Q (a)		Marks B1		Comments Allow NMS
	•	Solution			
	•	Solution Grad of L is negative	B1	Total	Allow NMS
	(a)	Solution Grad of L is negative Grad of L is $(\pm) \frac{2}{3}$	B1 B1	Total 2	Allow NMS PI; condone $(\pm) \frac{2}{3}x$; allow NMS Condone $\frac{3}{2}x$; ft wrong answer to (a)
	(a) (b)	Solution Grad of L is negative Grad of L is $(\pm) \frac{2}{3}$ Perp grad is $\frac{3}{2}$	B1 B1 B1F	Total 2	Allow NMS PI; condone $(\pm) \frac{2}{3}x$; allow NMS
	(a) (b)	Solution Grad of L is negative Grad of L is $(\pm) \frac{2}{3}$ Perp grad is $\frac{3}{2}$ Req'd line is $y - 1 = \frac{3}{2}(x - 4)$	B1 B1 B1F M1	2 1	Allow NMS PI; condone $(\pm)\frac{2}{3}x$; allow NMS Condone $\frac{3}{2}x$; ft wrong answer to (a) OE; B1 for full verification
	(a) (b) (c)	Solution Grad of L is negative Grad of L is $(\pm) \frac{2}{3}$ Perp grad is $\frac{3}{2}$ Req'd line is $y - 1 = \frac{3}{2}(x - 4)$ ie $3x - 2y = 10$	B1 B1 B1F M1 A1	2 1	Allow NMS PI; condone $(\pm)\frac{2}{3}x$; allow NMS Condone $\frac{3}{2}x$; ft wrong answer to (a) OE; B1 for full verification
	(a) (b) (c)	Solution Grad of L is negative Grad of L is $(\pm) \frac{2}{3}$ Perp grad is $\frac{3}{2}$ Req'd line is $y - 1 = \frac{3}{2}(x - 4)$ ie $3x - 2y = 10$ Elimination of x or y	B1 B1 B1F M1 A1 M1	2 1 2	Allow NMS PI; condone $(\pm)\frac{2}{3}x$; allow NMS Condone $\frac{3}{2}x$; ft wrong answer to (a) OE; B1 for full verification Convincingly shown (AG)

Total

10

7 (a)	m = 3, n = -8	B1B1	2	
(b)	Method for solving quadratic	M1		
	$x = -3 \pm \sqrt{8} \text{ or } \frac{-6 \pm \sqrt{32}}{2}$	A1		
	$\dots = -3 \pm 2\sqrt{2}$	B1	3	This mark is for $\sqrt{8} = 2\sqrt{2}$ or $\sqrt{32} = 4\sqrt{2}$
(c)	$-3 - 2\sqrt{2} < x < -3 + 2\sqrt{2}$	B1F	1	ft wrong answers or forms penalised in (b); allow $-5.83 < x < -0.17$; condone \le for $<$
	Total		6	
Q	Solution	Marks	Total	Comments
8(a)(i)	$y'=3x^2-6x+3$	M1A1	2	M1 if at least one term correct
(ii)	Solving quadratic $y'=0$	m1		Allow verification here
	SP is (1,1)	A1A1	3	NMS $x = 1$ B1, $y = 1$ B1 provided y correct
(b)(i)	$\int y dx = \frac{1}{4}x^4 - x^3 + \frac{3}{2}x^2 (+c)$	B3,2,1	3	B1 for each term
(ii)	Substitution of $x = 3$	M1		In c's integral (not y or y');
				M0 for attempting $\int_{3}^{3} y dx$
	$\int_{0}^{3} y dx = \frac{81}{4} - 27 + \frac{27}{2} = \frac{27}{4}$	A1		
	ie half of $\frac{1}{2}$ (3 × 9)			OE, eg integration
	hence result	A 1		Convincing shown (AC)

lune 2004

hence result

une zu	J4			
Q	Solution	Marks	Total	Comments
1(a)	$x^2 + 2x - 3 = 0$	В1	1	convincingly shown (AG)
(b)	Solution of quadratic	M1		Two solutions needed
				(M1A0 for x = -1 or 3)
	Solutions are (1, 1), (–3, –7)	A2,1	3	A1 for both x values or one pair; NMS 1/3

3 11

A1

Total

Convincing shown (AG)

	1 Otal		4	
·				·
Q	Solution	Marks	Total	Comments
5(a)	$\left(\sqrt{3} - \sqrt{2}\right)\left(\sqrt{3} + \sqrt{2}\right) = 1$	В1	1	Condone answer 3 – 2
(b)(i)	Rationalising denominator Expanding numerator	M1 m1		Method must be shown To give $m + n\sqrt{6}$, not necessarily
	$k = 5 - 2\sqrt{6}$	A1	3	simplified
(ii)	Rationalising denominator	M1		using original k or answer to (i)
	$1/k = 5 + 2\sqrt{6}$	A1	2	
	Total		6	

ı	וכ	١ /	T
ī	-1	VΙ	•
٦			•

6(a)(i)	$\int y \mathrm{d}x = \frac{1}{4}x^4 - x^3 + 3x^2(+c)$	M1A1	2	M1 if one term or all powers correct. Accept unsimplified
(ii)	Substitution and subtraction Definite integral = 18	m1 A2, 1F	3	Subtraction must be the right way ft one wrong coefficient in (i); A1 if only one (perhaps repeated) error
(b)(i)	$y' = 3x^2 - 6x + 6$	M1A1	2	M1 if at least one term correct
(ii)	y increasing if $y'>0$	M1		
	Completing square	m1		or using discriminant
	y' > 0 for all x	A1	3	
	Т	otal	10	
7(a)	At B , $2x + 3x = 15$	M1		OE elimination
	<i>B</i> is (3, 3)	A1	2	
(b)	Good attempt at equation of CD	M1		Linear equation, with same grad as AB (attempted)
	Gradient of <i>CD</i> correct Constant correct	A1 A1F	3	NMS $2x + 3y = 30$; $3/3$ 2x + 3y = k; $2/32x + 3y = (other)$; $0/3ft wrong grad: eqn satisfied by (6,6)$
(c)	D is (0, 10)	A1F	1	ft wrong equation for CD
()				
(d)	Complete method for area	M2		
(d)	Complete method for area Area = 22.5	M2 A2,1	4	A1 if at least relevant area correct